Summary of Core Facilities

Cognitive Function

Object Recognition

Object Placement

Social Discrimination Memory

Spontaneous Alternation

• Morris Water Maze

• Sensorimotor gaiting

• Radial Arm Maze

• Conditioned Taste Aversion

Labyrinth Maze

Affective / Emotional Behaviors

Social Interaction

Social Preference

Transmission of Food Preferences

Reproductive and mating behavior

Open Field

Marble Burying

Elevated Plus Maze

• Light/Dark Box

• Acoustic Startle

Porsolt (Forced Swim) Test

Maternal behavior

Novelty Supression of Feeding



Tests of Analgesia

Von Frey

Cold Tail Flick


Sensorimotor Function

Open Field


Grip Strength

• Gait analysis and toe spread

Balance Beam

• Visual Placing

• Visual Cliff

• Pupil dilation

Tape removal test



Functional Observation Battery

Estrous Cycle Staging

• Behavioral Tracking software

• Conditioned Place Preference

• Grooming

• Stereotypies

Developmental milestones (pups)

Homing (pups)

Play (juvenile)



| Home | Overview | Contact Us | Calendar | Policies | Summary of Tests | Data Sheets| Protocols | Forms | Links | Downloads |

| Albert Einstein College of Medicine | Neuroscience Dept | Animal Institute | Shared Facilities Home Page || Keys |

This is a test of motor coordination and motor learning [1-4]. In addition, it can be used to assess intoxication [5], sedation and strength / stamina [6].

The latency to fall from a rotating rod is scored automatically with infrared sensors in a Rotamex 5 rotarod (Columbus Inst; Columbus, Ohio). Motor coordination can be tested by comparing the latency to fall on the very first trial between treatment groups [7]. Motor learning can also be assessed by comparing the first trial with subsequent trials and is evident as an increased latency to fall over time [3, 4, 8-13].

1. Jones, B.J. and D.J. Roberts, The quantiative measurement of motor inco-ordination in naive mice using an acelerating rotarod. J Pharm Pharmacol, 1968. 20(4): p. 302-4.

2. Jones, B.J. and D.J. Roberts, A rotarod suitable for quantitative measurements of motor incoordination in naive mice. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol, 1968. 259(2): p. 211.

3. Pritchett, K. and G.B. Mulder, The rotarod. Contemp Top Lab Anim Sci, 2003. 42(6): p. 49.

4. Watzman, N., et al., Semiautomatic System For Timing Rotarod Performance. J Pharm Sci, 1964. 53: p. 1429-30.

5. Boehm, S.L., 2nd, et al., Sensitivity to ethanol-induced motor incoordination in 5-HT(1B) receptor null mutant mice is task-dependent: implications for behavioral assessment of genetically altered mice. Behav Neurosci, 2000. 114(2): p. 401-9.

6. Perrine, J.W. and E.I. Takesue, Use of the rotarod in determining grip strength in rats with adjuvant-induced arthritis. Arch Int Pharmacodyn Ther, 1968. 174(1): p. 192-8.

7. Lalonde, R., et al., Motor coordination in mice with hotfoot, Lurcher, and double mutations of the Grid2 gene encoding the delta-2 excitatory amino acid receptor. Physiol Behav, 2003. 80(2-3): p. 333-9.

8. Kuhn, P.L., et al., Motor function analysis of myelin mutant mice using a rotarod. Int J Dev Neurosci, 1995. 13(7): p. 715-22.

9. Buitrago, M.M., et al., Short and long-term motor skill learning in an accelerated rotarod training paradigm. Neurobiol Learn Mem, 2004. 81(3): p. 211-6.

10. Watzman, N., et al., Influence of certain parameters on the performance of mice on the rotarod. Arch Int Pharmacodyn Ther, 1967. 169(2): p. 362-74.

11. Rustay, N.R., D. Wahlsten, and J.C. Crabbe, Influence of task parameters on rotarod performance and sensitivity to ethanol in mice. Behav Brain Res, 2003. 141(2): p. 237-49.

12. Rozas, G., M.J. Guerra, and J.L. Labandeira-Garcia, An automated rotarod method for quantitative drug-free evaluation of overall motor deficits in rat models of parkinsonism. Brain Res Brain Res Protoc, 1997. 2(1): p. 75-84.

13. Ogura, T., et al., Impaired acquisition of skilled behavior in rotarod task by moderate depletion of striatal dopamine in a pre-symptomatic stage model of Parkinson's disease. Neurosci Res, 2005. 51(3): p. 299-308.